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Dimers in nucleating vapors
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The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersatu-
ration of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the
particle formation—growth process is studied starting with the definition of dimers as bound states of two
associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor
over all classical bound states, and the equilibrium population of dimers is found for two types of intermo-
lecular forces: the Lennard-JonélsJ) and rectangular welthard core(RW) potentials. The principle of
detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation—
growth process is then investigated under the assumption that the trimers are stable with respect to evaporation
and that the condensation rate is a power function of the particle mass. If the power expenef{n
+1) (n is a non-negative integgrthe kinetics of the process is described by a finite set of moments of
particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter
than that of the condensational growtht 2 universal functions of a nondimensional time define the kinetic
process. These functions are calculatedNer2/3 (gas-to-particle conversion in the free molecular regime
and\ =1/2 (formation of islands on surface$S1063-651X98)06309-(

PACS numbes): 68.10.Jy, 44.60-k, 64.60.Qb

[. INTRODUCTION The second part of the problem—finding the condensation
and evaporation rates—has been attacked from the following

Current kinetic approaches to the problem of nucleationtwo positions

of supersaturated vapors assume the particle formation to go (i) Ab initio calculations[3—8]. Starting with the classic
along the scheme or quantum-mechanical equations of motion the rates of re-
actions @)+ (1)—(g+1) (condensation and @)—(g
(g9)+(1)=(g+1) (1) —1)+(1) (evaporation have been calculated. This ap-
proach requires a solution of the many-body probl@mat
least the evaluation of multiple integraksnd the knowledge
of intermolecular potentials. Although nowadays respective

densi leculesn 5 1 and th numerical methods are well developed, this approach is so
ensing vapor molecu onomers in a g-merj an € cumbersome that it requires some approximations, the reli-

parameters of the carrier gas. The most widespread statemefjlijir of which is still not clear. In particular, the problem of

of the problem expresses the steady-state nucleatio/iaite o,y 1o introduce a-mer is far from a resolution.

terms of« and B [1]. This part of the problem was solved i) A parametrization of the rates and 8 [2,9—11. For

many times by numerous authofsee the recent overview example, the condensation rate is simply replaced by the

[2] and references therginThe result is as follows. product of the geometrical cross section times the thermal
The nucleation rate expressed in terms of condensatiofelocity of vapor molecules. The evaporation rate is ex-

and evaporation coefficients and the monomer concentratiopressed in terms of equilibrium distribution of vapor clusters

with the kinetic coefficient{forward a4c, and backward
Bg-1 rates being known functions ofy [the number of con-

looks as follows: at saturation by using a detailed balance consideration. Next,
this distribution is either calculated starting with the statisti-
J 1 cal mechanics or expressed in terms of physico-chemical

(20 constants of bulk liquidésurface tension, bulk density, etc.
The latter approach, although the most widspread, is es-
sentially restricted when describing the properties of the
Here Jp(c;)=3a;ci is the rate of dimerization smallest clusters for which the macroscopic notions such as
[reaction (1)}+(1)—(2)], c; is the monomer number surface tension or liquid state density do not work. Mean-
concentration, and while, the initial stages of the nucleation process can either
affect appreciably the nucleation rate or even entirely define
By c; the latter as, e.g., in the case of small “magic” embryos
Xg=——— == (3)  whose ability to decay is suppressed by their very high bind-
ing energieq7]. There are other situations where the initial
steps of new phase formation are of primary importance: at
with c; =Byl ay. very high supersaturations the mass of the critical embryo is
There exist other expressions for the nucleation rate thagmall and the formation process is regulated only by the
follow from Eq. (2) after some identity transformations. dimer stagd12,13.

To 14+ Xo+XoXa+XoXaXgt -+

1063-651X/98/583)/315711)/$15.00 PRE 58 3157 © 1998 The American Physical Society



3158 A. A. LUSHNIKOV AND M. KULMALA PRE 58

This paper addresses the study of the thermodynamic 2.0
properties of dimers and their role in the particle formation— Effective potential well
growth process. 1

The dimers give us a very good opportunity to perform an 15+ 1
explicit analysis, i.e., to calculate exactly all values of inter-
est. Next, assuming that the nucleation process is limited by
the rate of dimer formation, it becomes possible to build up E-E

" . . . 1.0+ 172
almost “perfect nucleation theory,” i.e., the theory allowing
for a full description of the particle formation—growth pro-
cess and including only microscopic characteristics of nucle-
0.0 \
054+

o

n
I
o

ating systems.

The first part of the paper starts with the definition of the
dimer. The most natural way to do this is to consider as a
dimer the bound states of two particles. But even in this case
it is not easy to answer the following question: what does the
term “bound state” mean? Should we consider as dimers the
guasistationary states with positive energies belonging to the
continuous spectrurfmeaning the states below the centrifu-
gial barrie)? The answer to the latter question is yes, be-
cause the probability of underbarrier penetration is typically
small and corresponding decay rates are comparable to or 404+
lower than that of the direct processes of breaking the dimers
by incident carrier gas molecules. Once the dimer has been
defined as a bound state of two molecules, it cannot decay

Arbitrary units of energy

into two monomers without an intervention of a third mol- A5

ecule, so its lifetime should depend on the presence of the 04 06 08 10 12 4

carrier gas. Neither can it form as a result of a binary colli- Arbitrary units of distance

sion: a third participant is needed to take the energy excess

away (see Fig. 1 FIG. 1. Formation of a dimer. Two monomers interacting via

The classical approach and the semiclassical quantizatiosotentialU (r) may form a bound state only after the transition from
rule are applied for calculating the energy density of boundhe state 1 to the states 2 or 3, whose energies lie below the poten-
and quasibound states of two molecules and then the probial barrier. A third participant is needed to take the energy excess
ability for a dimer to exist. After this the equilibrium con- E;—E, away. Similarly, a dimer cannot decay without aquiring a

U(r)=4e , %)

centration of dimers is found and the detailed balance conportion of energy for jumping up to an unbound state 1 from the

sideration yields the dimer evaporation rate. states 2 or 3. Not all bound states lie below zero energy. The state
The second part of the paper analyzes the kinetics of is also bound and must be taken into consideration in calculating

dimer controlled nucleation. Assuming that the particles conthe thermodynamic properties of dimers.

taining more than two molecules are stable against evapora-

tion (B4-,=0), the nucleation-growth equations are solved (a)lz (0)6

exactly for the condensation efficiencies growing as a power T

A=n/(n+1) of the particle massn(is a non-negative inte-

gen. In this case the growth equations are reduced to a finitg,ere . is the depth of the energy well amdis the collision

set of n+2 ordinary differential equations. When the life- yiameter.

time of dimers is short as compared to the time scale of the

particle formation-growth procesée.g., the characteristic

time for changing the monomer concentrafiotie descrip- IIl. PARTITION FUNCTION OF DIMERS

tion of the grovvth kinetigs becomes gniversal, i.e., it de_pends The process of spontaneous nucleation in vapors begins

on n+2 universal functions of specially chosen nondimen-it the formation of dimers that, in turn, are able either to

sional time. . ) , grow further or to decay back into two monomers. Even this
In our analysis we use the following two intermolecular fir; stage of the nucleation process is far from being simple.

pote_zntlals. i ) Neither the formation of a dimer nor its decay can happen
(i) The rectangular well potential with hard coBW \yithout a third participant.

dimers, Another very important problem is how to introduce the

dimer. In this paper we propose to consider as a dimer only
the bound states of two molecules. We add to those the

®, r<a ; , " .
“classical” bound states with positive energies. Although
U(r)y=y —Uop, a<r<R (4)  they belong to the continuous spectrum, their widths are
0, r>R. small because of the low penetrability of the corresponding

centifugal barrier. It is important to stress that these defined
dimers are not able to decay without an external intervention.
(ii) The Lennard-Jones potentidlJ dimers, Their lifetimes are thus of the order of intercollision times
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FIG. 2. The limits of integration ovekt in Eq. (14). The state FIG. 3. Bound states in a LJ potential. Bound states with posi-

with the positive energf is still bound once the maximum of the Ve energies exist only dt <L g, (curve 3. Above L =L, de-

: i 21 2 27 —
effective potential[ U(r)+#%2L2/2ur?] touches the energy level flnegl 2from 2tt1e conditiong U(r) +#°L/2ur°]’=0 and [U(r)
(curveL=L ). WhenL exceeds , no more bound states can exist +h°L“2ur<]"=0, the effective potential well disappears. Curve 2
at given energE. corresponds to the critical value=L .. At L>L . N0 bound

states exisfcurve 3.

[/v, i.e., much longer than the characteristic collision time
R/v (I being the mean free path of a molecuRethe dimer
size, andv the thermal velocity of moleculgsThere are
quite strong grounds for this way of introducing the dimers:

(B=1/KT). The probabilityw, to meet a dimer in a normal-
ization volumeV is given by the ration,=2,/Z,, where

i [ 1 - V(2w ukT)%?
all unbound states have characteristic lifetimes of the order - _ j d?’pf d3reAH(.N =
of R/v. This time is of the order of 10" s, which is typi- C(2mh)3 v (2wh)®
cally much shorter(at least by 18) than the characteristic (8)

intercollision timel/v.

In order to estimate the dimer decay rate, we first find the
number of bound states in the equilibrium, which allows for o ) _ )
evaluating the equilibrium concentrations of dimers. The contribution of the states with negative energy is

Let us consider an equilibrium state of the vaporreadily found as
(+carrier gag and calculate the equilibrium population of

A. Negative energies

dimers. To this end we find the energy densityE) of <0)= 1 j 30 H3r o= BH(P.T) p( _
bound states of the Hamiltonian describing the relative mo- Zo(E<0) (27h)3 dpdire 6=H(p.).
tion of two molecules in the dimer: (9
p2 Here 6(x) is the Heaviside step functio(x)=1 atx>0
H= 2—+U(r). (6) and#@(x)=0 otherwise.
)7

Integrating ovemp in Eq. (9) yields

Here u is the reduced mass of two molecules dhds the 2m(2ukT)%?
energy of their relative motion. The partition function of the Zy(E<0)= —(2 P
T

f efVlg(ndsr. (10
dimer is then defined as

Here we introduced

Zb:f w(E)e”SdE @ a(r) = ¥(3/2,8|U(r))A(—U(r)), (1)
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wherey(a,x) = [§t*~ e 'dt is the incomplete gamma func- Herer, is the turning pointn,L>1.

tion.
It is important to emphasize the convergence of the
gral in Eq.(10) atr—oe.

We transform the expression fdy,(E>0) as follows:
inte-

The contribution from the bound states with positive en- Z,(E> o)zz e*ﬁE:E (2L+1)e FE
ergies is considered separately for RW and LJ dimers. n,L
B. Positive energies: RW dimers :f dE e’BEJ dL?w(L,E). (14
For the rectangular potential, E(B) takes an especially
simple form: . . .
Here the summation goes over all bound states with positive
27Vo(2ukT)¥2 energies. The choice of the limits of integration in Ety) is
Zy(E<0)=——————eY09(3/28U,), (12  explained in Fig. 2.
(27h) The density of bound states(L,E)=dn/dE with given
where Vo=4x/3(R%—a®) is the volume of the interaction angular momentuh. is defined as
zone.
The centrifugial barrier in the rectangular potential well dn  u (R dr

also enables the existence of an infinite set of bound
with positive energy.
In order to findZ,(E>0), we start with the semiclassi

Bohr’s rule for determining the position of the discrete levels

in the potential well:

r2

states  w(L,E)=

d_E:% re hZLZ
cal ZM(E+UO)——2

2r

. (15

This expression follows immediately after differentiating Eq.

22
jR( \/2,u(E+ Ug)— AL )dr:,n.nh_ (13) (13) with respect tcE. The integration is readily performed
Mt

to give

h2L2
2u(E+Ug) — =~ at #2L%2>2ua’(E+Uy),

o(L.B)= 27h(E+Uyp) 7212 a 7212 (16)
2u(E+Ug) — = R 2u(E+Ug) — " at #2L%2<2pa?(E+Uy).
The next step is the integration ovief:
RS(ZMUO)S/Z E R2 32 RZ
o(L,E)dL?=———F— - —=-1 6l Up—| ——1|E|;. (17
f (LB 37h3(E+U,) Uo| a2 ° a2
|
;Lhe contribution of the bound states with positive energy is R3(2uU,)32
us ZbZWFRW(T)a (20)
v
RS(ZMUO)slz
Zy(E>0)= ————G(BUy), (18 ~ Where
37h
R ad|[kT\% (3 U, Uy s Uy
where D=1/ Gg) e R Ol
(21

_ (re™¥ds (1 (1-s5)¥exd —xs/(k®-1)]
GW%TL s+1 +Lds s+k2—1
19

C. Positive energies: LJ dimers

In contrast to the rectangular well, there is a restriction on
the maximal angular momentum at which the bound states
still exist in the LJ potentialsee Fig. 3. In increasing., the

andk=R/a. The second integral gives the core contribution.minimum of the effective potentiall +#2L2/2ur? disap-

The final result has the form

pears. The conditions for this event to happen are
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[U(r)+42L%2ur?]’=0 and [U(r)+#A2L2%2ur?]"=0. The limits of integration in ther(L?) plane are explained in
(22)  Fig. 4. The valuel _ is the minimal angular momentum at
which the state with energy is still bound. The upper limit
They are fulfilled atr =5Y% and #2L%/8euo?=9x5%3  L(r) is just the root of the equation /ZE—U(r)]
The maximal possible position of the last discrete level is=% '—2”2-_ )
0.8e. Integrating over.? gives
In order to calculate the density of bound states with posi-
tive energy, we again start with the Bohr quantization rule,

Mmoo L(r) dL?
which now contains Zn# on its right-hand side instead of 2t frl drfo \/

#°L?
2p(E-U)———
;

Nnh as was in the case of the vertical wall in the rectangular
potential well. The density of states is now

Mmoo dr Mmooy r2L?
o(L,E)= f . (23 =——| ‘r2dr\/2u(E-U)— . (25
27h Jry %22 a3 r2
2u(E-U)— . . _ — .
r2 After a trivial nondimensionalization, one has instead of
Eqg. (24
The total contribution of bound states&t0 to Zy, is 4632 e)32
Z,(E>0)= TAz(we), (26)
L (08¢ ro(E) ™
Zb(E>0)=—J dEe*BEJ dr
27whlJo r1(E) where
0.8
XJL‘” 2LdL (24 An(x)zf0 e*Xdef s"Jy—s 2+s ®—a(y)s 2ds.

L_ 2212 5
\/2,“«(E_U)——2 20

r The integration goes over af obeying the conditiony
—s 12457 6—a(y)s 2>0 ands<sy(y), where

1+\1-5y|"° -
008 So(y)= —y (28)
is the root of the set of two equations:
L(r _ _ _
5 o y—s5 2+ s58—a(y)s; 2=0, (29
‘CIEJ 0.04 4
£ 3 6
e e/ aly)= == (30)
2 1 So So
2 0.00 Equation(30) follows from the conditiondfy—s™ 2+s7©
° r —a(y)s ?]=0.
o L The expression foZ,(E>0), Eq.(26), should be added
g - to the total number of states with negative energy:
3
> 3 3/2
2004+ 4o°(2pe)”c
g Zy(E<0)= —————X" FDy(x), (3D
o 37h
<
wherex=4p¢€ and
-0.08 + 1 , du
<I>V(X)=f ey (32X (u—u?)—. (32)
e ’ .
1.0 1.2 1.4 1.6 18 2.0

_ . _ ' Equation(32) is readily derived from Eq(10) by substitut-
Arbitrary units of intermolecular distance ing there the LJ potential and replacing variables.

- . o _ The final result has the form
FIG. 4. The limits of integration in Eq24). At given energyE

the integration ovekt begins with the minimal valué _ when the 40_3(2 6)3/2
state with this energy can still be bound and finishds=at_(r). At b= K

FL(T), (33
L>L(r) the pointr becomes inaccessible. 37h3 L
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where

FL(T)=[(kT/4€)%?® 5 (4elkT)+3A,(4e/kT)].
(34

D. Equilibrium concentration

A. A. LUSHNIKOV AND M. KULMALA
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IIl. DIMER CONTROLLED NUCLEATION

An interesting application of the above results is the study
of the kinetics of dimer controlled nucleation, i.e., the case
when trimers and higher-mers are stable with respect to
evaporation, i.e.8y=0 atg>2. They, however, can grow
by condensing the vapor molecules. This situation corre-

We summarize the above calculations by writing downsponds to very high supersaturation when the mass of critical

the expressions fov,=2,/Z;.

1. RW dimers

w2 s
2 \/;V kT RW ’

where the functiorFr(T) is defined by Eq(21) and Vg
=47R33 is the dimer volume. Multiplying E¢(35) by the
total number of monomeric paifg$/2 in the volumeV and

dividing the result byV gives the equilibrium concentration

n, of RW dimers:

= MVR( o) ¥ (T) (36)
2= \/; kT RW .

Heren, is the vapor concentration at saturation.

embryo is close to 1. Such cases are not rarities.

A. Nucleation rate

The nucleation rate for the dimer controlled nucleation is
given by EQ.(2) (Xg=2=0):

1,1
j—za’lcll_’_—xz. (42)

The most remarkable feature of the dimer controlled
nucleation is its simplicity even as compared to the nonbar-
rier nucleation when the dimers are already stable particles
[12]. The point is that at,,<cy the dimerization ratey;
does not enter the final expression for the nucleation rate, the
latter being dependent only on the equilibrium dimer concen-
tration.

Let us begin by calculating the dimer evaporation rate. To
this end we use the principle of detailed balance. In equilib-
rium the rate of dimer formation should be equal to the rate

2. LJ dimers !
e of dimer decay or
Similarly we have
1
v, (45>3/2F n a7 5 aini—Ban,=0. (43
W = — —
2 V\/; kT LJ( . . .
Now Eq. (36) gives for the evaporation rate of RW dimers
and
_(KT/Ug)¥%ayme” Ao »
nav, [ 4e\ 32 2 2VoFrw(T)
N=—r= 17| Fu, (39)
2w The same value for LJ dimers fisee Eq(38)]
whereV,=4m0>/3. 3a 1
For LJ dimers we can introduce and find the average size Bo= L . (45)
of the dimer: o34 \m(4elkT)¥? FLy(T)
1 Equation(44) and (45) contain the dimerization rate; .
Ravzz_bf rp(r,B)dr, (39 A dimer is not able to form without a third participata

molecule of carrier gaswvhose role is just to take the energy

. . . H 2 3
wherep(r, ) is the radial density of the bound states at a€Xcess awaysee Fig. ], so the value ofx;>o“v(o°cy)

given temperature:

p(r,B)=4mr2efVig(r)

/,erf B \/ h2L2
+— | dE€e PE/2u(E-U)—
wh3 2 ) r2

(40)

or

Dyo(4B€)+3(4B€)% A 3(4B€)
T Do 4Be)+3(4Be) A (4Be)

(41)

av—

where the functiom\ , is defined by Eq(27).

(cm is the number concentration of the carrier )g&onsid-
ering all temperature-dependent factors to be of the order of
unity yields then the following order-of-magnitude estima-
tion of the evaporation rate:

Boxaylalcva?eyx(vll)(a?1?) (46)

or the respective lifetimg=1/8,10 ° s.

Fortunately, at small pressure of the condensing vapor
c,<<cy the dimerization ratev; does not enter the final ex-
pression for the nucleation rate, the latter being dependent
only on the equilibrium dimer concentration. Indeed
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so the unity on the right-hand side of E@2) can be ne- The first term on the right-hand side of this equation con-
glected, and the expression for the nucleation rate takes thebutes to the change of the trimer concentration due to the
form nucleation process producing stable trimers, while the sec-
= ond term describes the trimer loss due to the process (3)
2\ ini i
= acha3(4e/kT)3’2F,_J(T). @7 +(1)—(4). Theremaining equations have the structure

3
diCg=ag_1C1Cq— 1~ @4C1Cq. (549
Assuming thatw,= 7RZp we find L o , -
The initial conditions to these equatiof® preexisting par-

4w 5 de . ticles) claim
J=—=a*T)o°c Je/,u(—) Fu(T)=A(T)ci, (49
343 ! kT) Y ! Cy(t=0)=0. (55)
where we introduced(T) =R,,/oc~1.32(see Fig. 7 of Sec. In order to solve these equations, let us multiply Egs.
IV), and (52)—(55) by g* and sum over aly from 3 to. After a tiny

rearrangement we find

4
A(T)~4.21305\/e/,u(k—:_> Fuy(T). (49
dip=3"Aci+ac; 2, [(9+1)~g"lg ey,  (56)
g=

B. Nucleation kinetics
) L ) _ where
Below we consider the kinetics of particle formation as-

suming the following.
(i) At the initial moment of time the source of a condens- b, (1)= 23 g7cy(1). (57)
able vapor is switched on. The productivity of the source o=

(the number of produced particles per unit volume at a)“meApproximating the difference on the right-hand side of Eq.

is independent of time. - (56) by the derivative ¢+ 1)*—g*~xg* ! gives
(ii) There are no particles a&0.
(iii) The stable particles gcmers resulting from the dipy =3 A3+ Nac dyy 1. (58

nucleation process grow by condensing the vapor molecules.
The condensation efficiency, is a power function of the This procedure being applied t,, _; expresses it in terms
particle masg: of ¢3,_». Further steps produce the links N3 2)— (4\
N —3)—(5N—4) .... This consideration shows that at
ag=agr, (50) =n/(n+1) the set of equations for the moments is closed at
the n+2 step. In what follows we restrict ourselves to the

where« is the rate constant. cases\=1/2 and\=2/3 (n=1,2)
(iv) A quasiequilibrium between dimers and monomers is At A=1/2 one has

onset, i.e.,

0,2 dici=1—-3Ac— ac, ¢y,

02: . (51)
2B3; 5 1
) ) ) ) dypri= V3ACT+ Eacld’O’ (59

This assumption means that the dimers are not long-livers
within the global scale of the whole process whose charac- 3
teristic time is much longer than g4 (the estimate is given dido=Acs.

below).
Let us write down equations governing the kinetics of
particle formation.

At \=2/3 this set is a little longer,

dtC]_: | —ACi— 3a01¢2/3,

— 3

dies=1=3AG 01;3 ogC(t) 2 diparg=37Ac+ 2“01%/3,
The physical meaning of this equation is apparent: the mono- (60
mers(molecules of the condensable vapare produced by d —318p 34 Eac &
the sourcdthe first term on the right-hand side of E&2)] trLs 17 3mro
and disappear because of nucleatitime process (1) (1)
+(1)—(3), thesecond terrhand condensation onto the sur- dt¢0=Ac§.
faces that already formegtmers(the third term. The nucle-
ation rate constamh has been introduced by EC(SL8) and Before solving these equations, we introduce the follow-
(49). ing nondimensional unknown functions and the variable:

The trimer balance is given by the following equation:
o (634
dtC3=ACi—a301C3. (53) C:Cl \/|:’ ¢ |_' = I at’ (61)
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2.0 0.30
RW-DIMERS LJ-DIMERS
0.25 | R=Z(E>0)/Z
15 | an -////
0.20 |
(a) o i
C qoF T (b) § 0.15
u_é HNJ, _ Z,=Z(E>0)+Z(E<0)
N.Q
0.10 |
0.05 |-
Z(E>0)
0.0 L 1 N 1 L 1 L 1 . ) ) , .
0.5 1.0 1.5 2.0 25 3.0 0'000_2 0!4 0!6 o!s 1.0
TEMPERATURE (U /k) TEMPERATURE (4¢/k)
FIG. 5. RW dimers. The partition functioRgy*Z, of a RW FIG. 6. LJ dimers. The partition function of LJ dime(ia units

dimer as a function of temperatugqgs.(20) and(21)]. The relative  of w#3/[40%(21€e)¥?], Eq. (33). The contribution of the state
contributionR of the states with positive energies is also sho@n:  with positive energies is not so essential and almost independent of
no hard core(b) the hard core radius is one-half of the dimer size temperature.

(k=2).
O'2| 1/2
and the governing parameter, M= (65)
v
A I ) )
w= —\ﬁ. (62 Assuming 0=108% cm and v=10* cm/s gives u
a T =10""1, so u becomes of the order of unity only for
Equations(59) take the form unlikely productive sources. Normally is extremely small.
It is clear, therefore, how important it is to investigate the
d.C=1-3uC3—Coyp, asymptotic behavior of the solution to the above equations in
the limit of small w.
1 In order to clarify the idea of our asymptotic approach, we
drpa=\3uC3+ 5Ceo. 63 notice first that aw=0 no reasonable solutions to the sets
(63) and (64) come up: the monomer concentration grows
d,po=uC3. linearly with time while the momentg remain zero. In or-
der to avoid this difficulty let us rescale the variableand
The set(60) becomes unknown functions as follows.
At A=1/2,

d.C=1-3uC3—Coys, / / / /
r=u" ", C=um% = uly, eo=un""z

2 66
d, 5= 3%%uC3+ §C€01/3, (66
(64 At A=2/3,
1 _ ., 19 _ U _
d¢15= 3" C*+ 3 Cep, = B, C=uT, = uty, 67
e13= 12, o= pu.
dT()DOZ /-LC3 . . .
Rescaling the sg63) yields

The paramete. may be evaluated by order of magni- 1

tude. As follows from Eq(49), the constanAxvo® while —1_ ., A473_ =312, 273, —
2o po?. Hence dx=1-3u"x*=xy, dy=3"ux 5XZ (68



PRE 58 DIMERS IN NUCLEATING VAPORS 3165

1.35
. A=1/2
LJ-DIMERS @
1.34
b
© ®
Zo/ ~
3133 =
a [
< G
m S
O O
é 1.32 O
w o
z 2
<
>
1.31
1.30 . L
,
TEMPERATURE (4¢/k) NONDIMENSIONAL TIME

FIG. 7. The radius of a LJ dimer vs temperature. In contrast to
the traditional approach defining the dimer in terms of the number (b)
of all states of two molecules confined by a cutoff radius, no arti- r=1/2
ficially introduced size parameter appears for the dimer introduced
as their bound states. The spatial restriction is inferred naturally
from the definition of the dimer. The dimer radius of a LJ dimer
[Eg. (41)] is shown as a function of temperature. z

_ 3
d.z=x".

Similar operation with Eqs(64) gives

2
dx=1-3u?3-xy, dy=3"u"%3+ xz

3 & y
(69 >
1 w
d,z=3"3,2%3+ XU d.u=x5. % 5
=
Now the idea of rescaling becomes apparent: the small
factor u is removed in the last equation of the sé8) and
(64) while the positive powers gk still accompany the term
x3 responsible for the particle formation. These terms can
now be ignored at smalk. Equations defining the universal
kinetics of the particle formation—growth process look as
follows.
At A=1/2,
1 0 : T . T '
dx=1-xy, dy=3xz dz=x3. (70) 0 2 4 6
NONDIMENSIONAL TIME
At A=2/3, - . .
FIG. 8. Kinetics of particle formation—growth at=1/2. Shown
2 1 are (a) universal functionx dgscribing thg time depgndence of va-
d{x=1—xy, dgy: §xz, d§z= §xu, d£u=x3. por concentration gncb) universal functloqs describing the time
dependence of particle number concentratmurvez) and the mo-

(71 ment of the order of 1/2Zcurvey).



3166 A. A. LUSHNIKOV AND M. KULMALA PRE 58

It is also possible to find the asymptotic behavior of the
universal functions at largé. The vapor concentration is A=2/3 (a)
expected to drop af—o0, which means that the derivative
d,x can be neglected. Thexr~1/y and the rest of the set
(70) for the universal functions are solved to give the follow-
ing.

At \=1/2,

xxc {2y f12 zoconstzg=4.611.  (72)
At \=2/3,

xoc LTy 2B 7o [ uocconst=u0=8.601(.73)

All the above results are readily extended to arbitnary

VAPOR CONCENTRATION

IV. RESULTS AND DISCUSSION

We introduced the dimers as the bound states of two mol-
ecules. This definition differs from that commonly accepted
in the theory of nucleation where the work for embryo for-
mation is connected with the free energy of two molecules. 00 ) , ) . .
The partition function of two molecules obviously overesti- o 2 4 6
mates_t_he total number of dimer; by t.aking into account NONDIMENSIONAL TIME
short-living states on an equal footing with the bound states
whose lifetime depends on external intervent{erg., colli- 10
sions with the carrier gas moleculeg\nother disadvantage
that arises in including all the states into consideration is the | A=2/3 u b)
necessity to introduce spatial constraints that would allow for
distinguishing between dimer and nondimer configurations
of two molecules. 8 o

Figures 5 and 6 show the temperature dependence of the
dimer partition functions for RW and LJ dimers. It is very
interesting to expand on the contribution of the bound states 2
with positive energies. It is not gredless than 25%and
almost independent of the temperature in the case of LJ
dimers.

In contrast to RW dimers where dimer and nondimer spa-
tial configurations are distinctly separated, in the case of LJ
dimers such separation is not easy unless our definition is
introduced. If only bound states are attributed to the dimer 4+
states, then the spatial restriction for the dimer configuration
arises automatically. The average dimer radius as the func-
tion of temperature is shown in Fig. 7.

On discussing the thermodynamic properties of dimers,
we investigated the nucleation formation of disperse particles 2
assuming that the dimer stage alone limited the particle for-
mation rate. This is an extension of our previous widg],
where the nonbarrier nucleatigatable dimerswas consid-
ered. In addition to the asymptotic analysis of R&&], we
found a very effective ansatz allowing for the condensation- 0 y T T T
nucleation equations to be reduced to a finite number of the 0 2 4 6
ﬁrst-order differential equations for the moments of the par- NONDIMENSIONAL TIME
ticle mass spectrum. The second and very substantial
achievement was the rescaling of these equations in the limit
of low nucleation ratefthe parameten <1, Eq.(62), which FIG. 9. Kinetics of particle formation—growth at=2/3. Shown
allowed for further simplification of the kinetic problem and are (& universal functiorx describing the time dependence of va-
finally reduced it to finding four universal functions of the por concentration angb) universal functions describing the time
nondimensional time Equations(70) and (71) for these dependence of particle number concentratioarve u), the mo-
functlons were solved numerlca”y Flgures 8 and 9 demonmemt of the order of 1/&:Urvez), and the moment of the order 2/3
strate the results. (curvey).

MOMENTS
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The dimensionless concentration of the condensable vgump over the dimer state. The fact thds/a,c;<<1 (the
por is seen to grow linearly until the moment when thedimer evaporation time is much shorter than the condensa-
nucleation process has produced enough particles to depletien time) helped us to get rid of the dimerization rdtee
the vapor by condensation with the rate comparable to th&qgs.(49) and(50)]. The latter value is defined by three-body
source productivity. These newly born particles continue tgrocesses and is not yet well studied.
grow and consume more and more vapor so the source is The time evolution of the mass spectrum forming in the
unable to support a finite concentration level. The concentraaucleation-condensation process was shown to depend on a
tion drops with time[Figs. §a) and 9a)]. The moments of finite number of the particle spectrum moments once the
the mass spectrum are seen to grow with time exegpt homogeneity exponent defining the condensation rate is
(particle number concentratinnvhich remains a constant at specified as\=n/(n+1). Fortunately, this specification in-

t—oo [Figs. 8b) and 9b)]: cludes two practically important cases=1/2 and\ =2/3.
The former exponent is used for describing the formation of
$o=4.6111ap3 =AY g~ 8757 (\=1/2), island films(see, e.g., Ref§15,14 and references therain
while the latter corresponds to the condensation rate propor-
Bo=8.601/1 ap® P A~ (N =2/3). tional to the area of growing particle surface and is thus used
in the Physics of Aerosols for the description of the patrticle
V. CONCLUSION growth in the free molecular reginjd6].

) _ The renormalization transformation applied above to the

We introduced the dimers as bound states of two molyrowth equations allowed for a derivation of rather simple

ecules and outlined the role of the dimer stage in the particlgquations for the set of universal functions describing the

formation process. The calculations of the thermodynamiginetics of the nucleation-condensation process. The influ-
properties of these introduced dimers were performed for vagnce of external parametdtbe source productivity and tem-

der Waals dimers, i.e., two molecules kept together by ameraturg on the process is reduced to rescaling the
intermolecular potential. Side by side with the states withconcentration-time plane.

negative relative energy we introduced into consideration
qguasibound states with positive energy of relative motion
that arose due to the centrifugal barr!er. . . ACKNOWLEDGMENT
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