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Dimers in nucleating vapors
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2Department of Physics, University of Helsinki, P.O. Box 9, FIN-00014 Helsinki, Finland
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The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersatu-
ration of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the
particle formation–growth process is studied starting with the definition of dimers as bound states of two
associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor
over all classical bound states, and the equilibrium population of dimers is found for two types of intermo-
lecular forces: the Lennard-Jones~LJ! and rectangular well1hard core~RW! potentials. The principle of
detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation–
growth process is then investigated under the assumption that the trimers are stable with respect to evaporation
and that the condensation rate is a power function of the particle mass. If the power exponentl5n/(n
11) (n is a non-negative integer!, the kinetics of the process is described by a finite set of moments of
particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter
than that of the condensational growth,n12 universal functions of a nondimensional time define the kinetic
process. These functions are calculated forl52/3 ~gas-to-particle conversion in the free molecular regime!
andl51/2 ~formation of islands on surfaces!. @S1063-651X~98!06309-0#

PACS number~s!: 68.10.Jy, 44.60.1k, 64.60.Qb
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I. INTRODUCTION

Current kinetic approaches to the problem of nucleat
of supersaturated vapors assume the particle formation t
along the scheme

~g!1~1!
~g11! ~1!

with the kinetic coefficients~forward agc1 and backward
bg11 rates! being known functions ofg @the number of con-
densing vapor molecules~monomers! in a g-mer# and the
parameters of the carrier gas. The most widespread state
of the problem expresses the steady-state nucleation rateJ in
terms ofa and b @1#. This part of the problem was solve
many times by numerous authors~see the recent overview
@2# and references therein!. The result is as follows.

The nucleation rate expressed in terms of condensa
and evaporation coefficients and the monomer concentra
looks as follows:

J
J2

5
1

11x21x2x31x2x3x41•••

. ~2!

Here J2(c1)5 1
2 a1c1

2 is the rate of dimerization
@reaction (1)1(1)→(2)#, c1 is the monomer numbe
concentration, and

xg5
bg

agc1
5

cg*

c1
~3!

with cg* 5bg /ag .
There exist other expressions for the nucleation rate

follow from Eq. ~2! after some identity transformations.
PRE 581063-651X/98/58~3!/3157~11!/$15.00
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The second part of the problem—finding the condensa
and evaporation rates—has been attacked from the follow
two positions.

~i! Ab initio calculations@3–8#. Starting with the classic
or quantum-mechanical equations of motion the rates of
actions (g)1(1)→(g11) ~condensation! and (g)→(g
21)1(1) ~evaporation! have been calculated. This ap
proach requires a solution of the many-body problem~or at
least the evaluation of multiple integrals! and the knowledge
of intermolecular potentials. Although nowadays respect
numerical methods are well developed, this approach is
cumbersome that it requires some approximations, the
ability of which is still not clear. In particular, the problem o
how to introduce ag-mer is far from a resolution.

~ii ! A parametrization of the ratesa andb @2,9–11#. For
example, the condensation rate is simply replaced by
product of the geometrical cross section times the ther
velocity of vapor molecules. The evaporation rate is e
pressed in terms of equilibrium distribution of vapor cluste
at saturation by using a detailed balance consideration. N
this distribution is either calculated starting with the statis
cal mechanics or expressed in terms of physico-chem
constants of bulk liquids~surface tension, bulk density, etc.!.

The latter approach, although the most widspread, is
sentially restricted when describing the properties of
smallest clusters for which the macroscopic notions such
surface tension or liquid state density do not work. Mea
while, the initial stages of the nucleation process can eit
affect appreciably the nucleation rate or even entirely de
the latter as, e.g., in the case of small ‘‘magic’’ embry
whose ability to decay is suppressed by their very high bi
ing energies@7#. There are other situations where the initi
steps of new phase formation are of primary importance
very high supersaturations the mass of the critical embry
small and the formation process is regulated only by
dimer stage@12,13#.
3157 © 1998 The American Physical Society
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This paper addresses the study of the thermodyna
properties of dimers and their role in the particle formatio
growth process.

The dimers give us a very good opportunity to perform
explicit analysis, i.e., to calculate exactly all values of int
est. Next, assuming that the nucleation process is limited
the rate of dimer formation, it becomes possible to build
almost ‘‘perfect nucleation theory,’’ i.e., the theory allowin
for a full description of the particle formation–growth pro
cess and including only microscopic characteristics of nu
ating systems.

The first part of the paper starts with the definition of t
dimer. The most natural way to do this is to consider a
dimer the bound states of two particles. But even in this c
it is not easy to answer the following question: what does
term ‘‘bound state’’ mean? Should we consider as dimers
quasistationary states with positive energies belonging to
continuous spectrum~meaning the states below the centrif
gial barrier!? The answer to the latter question is yes, b
cause the probability of underbarrier penetration is typica
small and corresponding decay rates are comparable t
lower than that of the direct processes of breaking the dim
by incident carrier gas molecules. Once the dimer has b
defined as a bound state of two molecules, it cannot de
into two monomers without an intervention of a third mo
ecule, so its lifetime should depend on the presence of
carrier gas. Neither can it form as a result of a binary co
sion: a third participant is needed to take the energy exc
away ~see Fig. 1!.

The classical approach and the semiclassical quantiza
rule are applied for calculating the energy density of bou
and quasibound states of two molecules and then the p
ability for a dimer to exist. After this the equilibrium con
centration of dimers is found and the detailed balance c
sideration yields the dimer evaporation rate.

The second part of the paper analyzes the kinetics
dimer controlled nucleation. Assuming that the particles c
taining more than two molecules are stable against evap
tion (bg.250), the nucleation-growth equations are solv
exactly for the condensation efficiencies growing as a po
l5n/(n11) of the particle mass (n is a non-negative inte
ger!. In this case the growth equations are reduced to a fi
set of n12 ordinary differential equations. When the life
time of dimers is short as compared to the time scale of
particle formation-growth process~e.g., the characteristic
time for changing the monomer concentration!, the descrip-
tion of the growth kinetics becomes universal, i.e., it depe
on n12 universal functions of specially chosen nondime
sional time.

In our analysis we use the following two intermolecul
potentials.

~i! The rectangular well potential with hard core~RW
dimers!,

U~r !5H `, r ,a

2U0 , a,r ,R

0, r .R.

~4!

~ii ! The Lennard-Jones potential~LJ dimers!,
ic
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U~r !54eF S s

r D 12

2S s

r D 6G , ~5!

wheree is the depth of the energy well ands is the collision
diameter.

II. PARTITION FUNCTION OF DIMERS

The process of spontaneous nucleation in vapors be
with the formation of dimers that, in turn, are able either
grow further or to decay back into two monomers. Even t
first stage of the nucleation process is far from being simp
Neither the formation of a dimer nor its decay can happ
without a third participant.

Another very important problem is how to introduce th
dimer. In this paper we propose to consider as a dimer o
the bound states of two molecules. We add to those
‘‘classical’’ bound states with positive energies. Althoug
they belong to the continuous spectrum, their widths
small because of the low penetrability of the correspond
centifugal barrier. It is important to stress that these defin
dimers are not able to decay without an external intervent
Their lifetimes are thus of the order of intercollision time

FIG. 1. Formation of a dimer. Two monomers interacting v
potentialU(r ) may form a bound state only after the transition fro
the state 1 to the states 2 or 3, whose energies lie below the po
tial barrier. A third participant is needed to take the energy exc
E12E2 away. Similarly, a dimer cannot decay without aquiring
portion of energy for jumping up to an unbound state 1 from
states 2 or 3. Not all bound states lie below zero energy. The s
2 is also bound and must be taken into consideration in calcula
the thermodynamic properties of dimers.
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l /v, i.e., much longer than the characteristic collision tim
R/v ( l being the mean free path of a molecule,R the dimer
size, andv the thermal velocity of molecules!. There are
quite strong grounds for this way of introducing the dime
all unbound states have characteristic lifetimes of the or
of R/v. This time is of the order of 10211 s, which is typi-
cally much shorter~at least by 102) than the characteristic
intercollision timel /v.

In order to estimate the dimer decay rate, we first find
number of bound states in the equilibrium, which allows
evaluating the equilibrium concentrations of dimers.

Let us consider an equilibrium state of the vap
~1carrier gas! and calculate the equilibrium population o
dimers. To this end we find the energy densityv(E) of
bound states of the Hamiltonian describing the relative m
tion of two molecules in the dimer:

H5
p2

2m
1U~r !. ~6!

Here m is the reduced mass of two molecules andE is the
energy of their relative motion. The partition function of th
dimer is then defined as

Zb5E v~E!e2bEdE ~7!

FIG. 2. The limits of integration overL in Eq. ~14!. The state
with the positive energyE is still bound once the maximum of th
effective potential@U(r )1\2L2/2mr 2# touches the energy leve
~curveL5L2). WhenL exceedsL1 no more bound states can exi
at given energyE.
:
er

e
r

r

-

(b51/kT). The probabilityw2 to meet a dimer in a normal
ization volumeV is given by the ratiow25Zb /Zt , where

Zt5
1

~2p\!3E d3pE
V
d3r e2bH~p,r !5

V~2pmkT!3/2

~2p\!3
.

~8!

A. Negative energies

The contribution of the states with negative energy
readily found as

Zb~E,0!5
1

~2p\!3E d3p d3r e2bH~p,r !u„2H~p,r !….

~9!

Here u(x) is the Heaviside step function:u(x)51 at x.0
andu(x)50 otherwise.

Integrating overp in Eq. ~9! yields

Zb~E,0!5
2p~2mkT!3/2

~2p\!3 E ebuU~r !uq~r !d3r . ~10!

Here we introduced

q~r !5g„3/2,buU~r !u…u„2U~r !…, ~11!

FIG. 3. Bound states in a LJ potential. Bound states with po
tive energies exist only atL,Lmax ~curve 1!. Above L5Lmax de-
fined from the conditions@U(r )1\2L2/2mr 2#850 and @U(r )
1\2L2/2mr 2#950, the effective potential well disappears. Curve
corresponds to the critical valueL5Lmax. At L.Lmax no bound
states exist~curve 3!.
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whereg(a,x)5*0
xta21e2tdt is the incomplete gamma func

tion.
It is important to emphasize the convergence of the in

gral in Eq.~10! at r→`.
The contribution from the bound states with positive e

ergies is considered separately for RW and LJ dimers.

B. Positive energies: RW dimers

For the rectangular potential, Eq.~8! takes an especially
simple form:

Zb~E,0!5
2pV0~2mkT!3/2

~2p\!3
ebU0g~3/2,bU0!, ~12!

where V054p/3(R32a3) is the volume of the interaction
zone.

The centrifugial barrier in the rectangular potential w
also enables the existence of an infinite set of bound st
with positive energy.

In order to findZb(E.0), we start with the semiclassica
Bohr’s rule for determining the position of the discrete lev
in the potential well:

E
r t

RSA2m~E1U0!2
\2L2

r 2 D dr5pn\. ~13!
i

n

-

-

l
es

Here r t is the turning point,n,L@1.
We transform the expression forZb(E.0) as follows:

Zb~E.0!5( e2bE5(
n,L

~2L11!e2bE

5E dE e2bEE dL2v~L,E!. ~14!

Here the summation goes over all bound states with posi
energies. The choice of the limits of integration in Eq.~14! is
explained in Fig. 2.

The density of bound statesv(L,E)5dn/dE with given
angular momentumL is defined as

v~L,E!5
dn

dE
5

m

p\
E

r t

R dr

A2m~E1U0!2
\2L2

2r 2

. ~15!

This expression follows immediately after differentiating E
~13! with respect toE. The integration is readily performe
to give
v~L,E!5
R

2p\~E1U0! 5A2m~E1U0!2
\2L2

R2
at \2L2.2ma2~E1U0!,

A2m~E1U0!2
\2L2

R2
2

a

R
A2m~E1U0!2

\2L2

a2
at \2L2,2ma2~E1U0!.

~16!

The next step is the integration overL2:

E v~L,E!dL25
R3~2mU0!3/2

3p\3~E1U0!
H 11F12

E

U0
S R2

a2
21D G 3/2

uFU02S R2

a2
21D EG J . ~17!
on
tes
The contribution of the bound states with positive energy
thus

Zb~E.0!5
R3~2mU0!3/2

3p\3
G~bU0!, ~18!

where

G~x!5E
0

`e2sxds

s11
1E

0

1

ds
~12s!3/2exp@2xs/~k221!#

s1k221
~19!

andk5R/a. The second integral gives the core contributio
The final result has the form
s

.

Zb5
R3~2mU0!3/2

3p\3
FRW~T!, ~20!

where

FRW~T!5S 12
a3

R3D S kT

U0
D 3/2

gS 3

2
,
U0

kTDexpS U0

kTD1GS U0

kTD .

~21!

C. Positive energies: LJ dimers

In contrast to the rectangular well, there is a restriction
the maximal angular momentum at which the bound sta
still exist in the LJ potential~see Fig. 3!. In increasingL, the
minimum of the effective potentialU1\2L2/2mr 2 disap-
pears. The conditions for this event to happen are
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@U~r !1\2L2/2mr 2#850 and @U~r !1\2L2/2mr 2#950.
~22!

They are fulfilled atr 551/6s and \2L2/8ems2593525/3.
The maximal possible position of the last discrete leve
0.8e.

In order to calculate the density of bound states with po
tive energy, we again start with the Bohr quantization ru
which now contains 2pn\ on its right-hand side instead o
pn\ as was in the case of the vertical wall in the rectangu
potential well. The density of states is now

v~L,E!5
m

2p\
E

r 1

r 2 dr

A2m~E2U !2
\2L2

r 2

. ~23!

The total contribution of bound states atE.0 to Zb is

Zb~E.0!5
m

2p\
E

0

0.8e

dE e2bEE
r 1~E!

r 2~E!

dr

3E
L2

L~r ! 2LdL

A2m~E2U !2
\2L2

r 2

. ~24!

FIG. 4. The limits of integration in Eq.~24!. At given energyE
the integration overL begins with the minimal valueL2 when the
state with this energy can still be bound and finishes atL5L(r ). At
L.L(r ) the pointr becomes inaccessible.
s

i-
,

r

The limits of integration in the (r ,L2) plane are explained in
Fig. 4. The valueL2 is the minimal angular momentum a
which the state with energyE is still bound. The upper limit
L(r ) is just the root of the equation 2m@E2U(r )#
5\2L2/r 2.

Integrating overL2 gives

m

2p\
E

r 1

r 2
drE

L2

L~r ! dL2

A2m~E2U !2
\2L2

r 2

5
m

p\3
E

r 1

r 2
r 2drA2m~E2U !2

\2L2
2

r 2
. ~25!

After a trivial nondimensionalization, one has instead
Eq. ~24!

Zb~E.0!5
4s3~2me!3/2

p\3
L2~4be!, ~26!

where

Ln~x!5E
0

0.8

e2xydyE snAy2s2121s262a~y!s22ds.

~27!

The integration goes over alls obeying the conditiony
2s2121s262a(y)s22.0 ands,s0(y), where

s0~y!5S 11A125y

y D 1/6

~28!

is the root of the set of two equations:

y2s0
2121s0

262a~y!s0
2250, ~29!

a~y!5
3

s0
4

2
6

s0
10

. ~30!

Equation~30! follows from the condition]s@y2s2121s26

2a(y)s22#50.
The expression forZb(E.0), Eq. ~26!, should be added

to the total number of states with negative energy:

Zb~E,0!5
4s3~2me!3/2

3p\3
x23/2F3/2~x!, ~31!

wherex54be and

Fn~x!5E
0

1

ex~u2u2!g„3/2,x~u2u2!…
du

un
. ~32!

Equation~32! is readily derived from Eq.~10! by substitut-
ing there the LJ potential and replacing variables.

The final result has the form

Zb5
4s3~2me!3/2

3p\3
FLJ~T!, ~33!
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where

FLJ~T!5@~kT/4e!3/2F3/2~4e/kT!13L2~4e/kT!#.
~34!

D. Equilibrium concentration

We summarize the above calculations by writing do
the expressions forw25Zb /Zt .

1. RW dimers

w25
2VR

ApV
S U0

kTD 3/2

FRW~T!, ~35!

where the functionFRW(T) is defined by Eq.~21! and VR
54pR3/3 is the dimer volume. Multiplying Eq.~35! by the
total number of monomeric pairsN1

2/2 in the volumeV and
dividing the result byV gives the equilibrium concentratio
n2 of RW dimers:

n25
n1

2VR

Ap
S U0

kTD 3/2

FRW~T!. ~36!

Heren1 is the vapor concentration at saturation.

2. LJ dimers

Similarly we have

w25
Vs

VAp
S 4e

kTD 3/2

FLJ~T! ~37!

and

n25
n1

2Vs

2Ap
S 4e

kTD 3/2

FLJ~T!, ~38!

whereVs54ps3/3.
For LJ dimers we can introduce and find the average

of the dimer:

Rav5
1

Zb
E rr~r ,b!dr, ~39!

wherer(r ,b) is the radial density of the bound states a
given temperature:

r~r ,b!54pr 2ebuU~r !uq~r !

1
mr 2

p\3E dE e2bEA2m~E2U !2
\2L2

2

r 2

~40!

or

Rav5s
F5/3~4be!13~4be!3/2L3~4be!

F3/2~4be!13~4be!3/2L2~4be!
, ~41!

where the functionLn is defined by Eq.~27!.
e

III. DIMER CONTROLLED NUCLEATION

An interesting application of the above results is the stu
of the kinetics of dimer controlled nucleation, i.e., the ca
when trimers and higher-mers are stable with respec
evaporation, i.e.,bg50 at g.2. They, however, can grow
by condensing the vapor molecules. This situation cor
sponds to very high supersaturation when the mass of cri
embryo is close to 1. Such cases are not rarities.

A. Nucleation rate

The nucleation rate for the dimer controlled nucleation
given by Eq.~2! (xg.250):

J5
1

2
a1c1

2 1

11x2
. ~42!

The most remarkable feature of the dimer controll
nucleation is its simplicity even as compared to the nonb
rier nucleation when the dimers are already stable parti
@12#. The point is that atcm!cM the dimerization ratea1
does not enter the final expression for the nucleation rate
latter being dependent only on the equilibrium dimer conc
tration.

Let us begin by calculating the dimer evaporation rate.
this end we use the principle of detailed balance. In equi
rium the rate of dimer formation should be equal to the r
of dimer decay or

1

2
a1n1

22b2n250. ~43!

Now Eq. ~36! gives for the evaporation rate of RW dimers

b25
~kT/U0!3/2a1Ape2bU0

2V0FRW~T!
. ~44!

The same value for LJ dimers is@see Eq.~38!#

b25
3a1

s34Ap~4e/kT!3/2

1

FLJ~T!
. ~45!

Equation~44! and ~45! contain the dimerization ratea1 .
A dimer is not able to form without a third participant~a
molecule of carrier gas! whose role is just to take the energ
excess away~see Fig. 1!, so the value ofa1}s2v(s3cM)
(cM is the number concentration of the carrier gas!. Consid-
ering all temperature-dependent factors to be of the orde
unity yields then the following order-of-magnitude estim
tion of the evaporation rate:

b2}a1 /s3}vs2cM}~v/ l !~s2/ l 2! ~46!

or the respective lifetimet}1/b2}1026 s.
Fortunately, at small pressure of the condensing va

c1!cM the dimerization ratea1 does not enter the final ex
pression for the nucleation rate, the latter being depend
only on the equilibrium dimer concentration. Indeed

x25
b2

a2
}

vs2cM

vs2
}

cM

c1
@1
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so the unity on the right-hand side of Eq.~42! can be ne-
glected, and the expression for the nucleation rate takes
form

J5
2Ap

3
a2c1

3s3~4e/kT!3/2FLJ~T!. ~47!

Assuming thata25pRav
2 v we find

J5
4p

3A3
a2~T!s5c1

3Ae/mS 4e

kTDFLJ~T!5A~T!c1
3 , ~48!

where we introduceda(T)5Rav/s'1.32~see Fig. 7 of Sec
IV !, and

A~T!'4.213s5Ae/mS 4e

kTDFLJ~T!. ~49!

B. Nucleation kinetics

Below we consider the kinetics of particle formation a
suming the following.

~i! At the initial moment of time the source of a conden
able vapor is switched on. The productivity of the sourcI
~the number of produced particles per unit volume at a tim!
is independent of time.

~ii ! There are no particles att50.
~iii ! The stable particles (g-mers! resulting from the

nucleation process grow by condensing the vapor molecu
The condensation efficiencyag is a power function of the
particle massg:

ag5agl, ~50!

wherea is the rate constant.
~iv! A quasiequilibrium between dimers and monomers

onset, i.e.,

c25
a1c1

2

2b2
. ~51!

This assumption means that the dimers are not long-liv
within the global scale of the whole process whose cha
teristic time is much longer than 1/b2 ~the estimate is given
below!.

Let us write down equations governing the kinetics
particle formation.

dtc15I 23Ac1
32c1(

g>3
agcg~ t !. ~52!

The physical meaning of this equation is apparent: the mo
mers~molecules of the condensable vapor! are produced by
the source@the first term on the right-hand side of Eq.~52!#
and disappear because of nucleation@the process (1)1(1)
1(1)→(3), thesecond term# and condensation onto the su
faces that already formedg-mers~the third term!. The nucle-
ation rate constantA has been introduced by Eqs.~48! and
~49!.

The trimer balance is given by the following equation:

dtc35Ac1
32a3c1c3 . ~53!
he

-

-

s.

s

rs
c-

f

o-

The first term on the right-hand side of this equation co
tributes to the change of the trimer concentration due to
nucleation process producing stable trimers, while the s
ond term describes the trimer loss due to the process
1(1)→(4). Theremaining equations have the structure

dtcg5ag21c1cg212agc1cg . ~54!

The initial conditions to these equations~no preexisting par-
ticles! claim

cg~ t50!50. ~55!

In order to solve these equations, let us multiply E
~52!–~55! by gl and sum over allg from 3 to`. After a tiny
rearrangement we find

dtfl53lAc1
31ac1(

g>3
@~g11!l2gl#glcg , ~56!

where

fg~ t !5 (
g>3

ggcg~ t !. ~57!

Approximating the difference on the right-hand side of E
~56! by the derivative (g11)l2gl'lgl21 gives

dtfl53lAc1
31lac1f2l21 . ~58!

This procedure being applied tof2l21 expresses it in terms
of f3l22 . Further steps produce the links (3l22)→(4l
23)→(5l24) . . . . This consideration shows that atl
5n/(n11) the set of equations for the moments is closed
the n12 step. In what follows we restrict ourselves to th
casesl51/2 andl52/3 (n51,2).

At l51/2 one has

dtc15I 23Ac1
32ac1f1/2,

dtf1/25A3Ac1
31

1

2
ac1f0 , ~59!

dtf05Ac1
3 .

At l52/3 this set is a little longer,

dtc15I 2Ac1
323ac1f2/3,

dtf2/3532/3Ac1
31

2

3
ac1f1/3,

~60!

dtf1/3531/3Ac1
31

1

3
ac1f0 ,

dtf05Ac1
3 .

Before solving these equations, we introduce the follo
ing nondimensional unknown functions and the variable:

C5c1Aa

I
, w5Aa

I
, t5AIat, ~61!
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and the governing parameter,

m5
A

a
A I

a
. ~62!

Equations~59! take the form

dtC5123mC32Cw1/2,

dtw1/25A3mC31
1

2
Cw0 , ~63!

dtf05mC3 .

The set~60! becomes

dtC5123mC32Cw2/3,

dtw2/3532/3mC31
2

3
Cw1/3,

~64!

dtw1/3531/3mC31
1

3
Cw0 ,

dtw05mC3 .

The parameterm may be evaluated by order of magn
tude. As follows from Eq.~49!, the constantA}vs5 while
a}vs2. Hence

FIG. 5. RW dimers. The partition functionFRW}Zb of a RW
dimer as a function of temperature@Eqs.~20! and~21!#. The relative
contributionR of the states with positive energies is also shown:~a!
no hard core,~b! the hard core radius is one-half of the dimer si
(k52).
m}
s2I 1/2

v1/2
. ~65!

Assuming s51028 cm and v5104 cm/s gives m
510214AI , so m becomes of the order of unity only fo
unlikely productive sources. Normallym is extremely small.
It is clear, therefore, how important it is to investigate t
asymptotic behavior of the solution to the above equation
the limit of smallm.

In order to clarify the idea of our asymptotic approach, w
notice first that atm50 no reasonable solutions to the se
~63! and ~64! come up: the monomer concentration grow
linearly with time while the momentsf remain zero. In or-
der to avoid this difficulty let us rescale the variablet and
unknown functions as follows.

At l51/2,

t5m21/7z, C5m21/7x, w1/25m1/7y, w05m7/3z.
~66!

At l52/3,

t5m21/9z, C5m21/9x, w2/35m1/9y,
~67!

w1/35m1/3z, w05m5/9u.

Rescaling the set~63! yields

dzx5123m4/7x32xy, dzy531/2m2/7x31
1

2
xz, ~68!

FIG. 6. LJ dimers. The partition function of LJ dimers„in units
of p\3/@4s3(2me)3/2#, Eq. ~33!…. The contribution of the state
with positive energies is not so essential and almost independe
temperature.
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dzz5x3.

Similar operation with Eqs.~64! gives

dzx5123m2/3x32xy, dzy532/3m4/9x31
2

3
xz,

~69!

dzz531/3m2/9x31
1

3
xu, dzu5x3.

Now the idea of rescaling becomes apparent: the sm
factor m is removed in the last equation of the sets~63! and
~64! while the positive powers ofm still accompany the term
x3 responsible for the particle formation. These terms c
now be ignored at smallm. Equations defining the universa
kinetics of the particle formation–growth process look
follows.

At l51/2,

dzx512xy, dzy5
1

2
xz, dzz5x3. ~70!

At l52/3,

dzx512xy, dzy5
2

3
xz, dzz5

1

3
xu, dzu5x3.

~71!

FIG. 7. The radius of a LJ dimer vs temperature. In contras
the traditional approach defining the dimer in terms of the num
of all states of two molecules confined by a cutoff radius, no a
ficially introduced size parameter appears for the dimer introdu
as their bound states. The spatial restriction is inferred natur
from the definition of the dimer. The dimer radius of a LJ dim
@Eq. ~41!# is shown as a function of temperature.
ll
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FIG. 8. Kinetics of particle formation–growth atl51/2. Shown
are ~a! universal functionx describing the time dependence of v
por concentration and~b! universal functions describing the tim
dependence of particle number concentration~curvez) and the mo-
ment of the order of 1/2~curvey).
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It is also possible to find the asymptotic behavior of t
universal functions at largez. The vapor concentration i
expected to drop atz→`, which means that the derivativ
dzx can be neglected. Thenx'1/y and the rest of the se
~70! for the universal functions are solved to give the follo
ing.

At l51/2,

x}z21/2, y}z1/2, z}const5z054.611. ~72!

At l52/3,

x}z22/3, y}z2/3, z}z1/3, u}const5u058.601.
~73!

All the above results are readily extended to arbitraryn.

IV. RESULTS AND DISCUSSION

We introduced the dimers as the bound states of two m
ecules. This definition differs from that commonly accept
in the theory of nucleation where the work for embryo fo
mation is connected with the free energy of two molecul
The partition function of two molecules obviously overes
mates the total number of dimers by taking into acco
short-living states on an equal footing with the bound sta
whose lifetime depends on external intervention~e.g., colli-
sions with the carrier gas molecules!. Another disadvantage
that arises in including all the states into consideration is
necessity to introduce spatial constraints that would allow
distinguishing between dimer and nondimer configuratio
of two molecules.

Figures 5 and 6 show the temperature dependence o
dimer partition functions for RW and LJ dimers. It is ve
interesting to expand on the contribution of the bound sta
with positive energies. It is not great~less than 25%! and
almost independent of the temperature in the case of
dimers.

In contrast to RW dimers where dimer and nondimer s
tial configurations are distinctly separated, in the case of
dimers such separation is not easy unless our definitio
introduced. If only bound states are attributed to the dim
states, then the spatial restriction for the dimer configura
arises automatically. The average dimer radius as the fu
tion of temperature is shown in Fig. 7.

On discussing the thermodynamic properties of dime
we investigated the nucleation formation of disperse partic
assuming that the dimer stage alone limited the particle
mation rate. This is an extension of our previous work@12#,
where the nonbarrier nucleation~stable dimers! was consid-
ered. In addition to the asymptotic analysis of Ref.@12#, we
found a very effective ansatz allowing for the condensati
nucleation equations to be reduced to a finite number of
first-order differential equations for the moments of the p
ticle mass spectrum. The second and very substa
achievement was the rescaling of these equations in the
of low nucleation rates@the parameterm!1, Eq.~62!, which
allowed for further simplification of the kinetic problem an
finally reduced it to finding four universal functions of th
nondimensional time#. Equations~70! and ~71! for these
functions were solved numerically. Figures 8 and 9 dem
strate the results.
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FIG. 9. Kinetics of particle formation–growth atl52/3. Shown
are ~a! universal functionx describing the time dependence of v
por concentration and~b! universal functions describing the tim
dependence of particle number concentration~curve u), the mo-
memt of the order of 1/3~curvez), and the moment of the order 2/
~curvey).
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The dimensionless concentration of the condensable
por is seen to grow linearly until the moment when t
nucleation process has produced enough particles to de
the vapor by condensation with the rate comparable to
source productivity. These newly born particles continue
grow and consume more and more vapor so the sourc
unable to support a finite concentration level. The concen
tion drops with time@Figs. 8~a! and 9~a!#. The moments of
the mass spectrum are seen to grow with time exceptf0
~particle number concentration!, which remains a constant a
t→` @Figs. 8~b! and 9~b!#:

f054.611AIam3/7}A3/7a28/7I 5/7 ~l51/2!,

f058.601AIam5/9}A5/9a24/3I 7/9 ~l52/3!.

V. CONCLUSION

We introduced the dimers as bound states of two m
ecules and outlined the role of the dimer stage in the part
formation process. The calculations of the thermodyna
properties of these introduced dimers were performed for
der Waals dimers, i.e., two molecules kept together by
intermolecular potential. Side by side with the states w
negative relative energy we introduced into considerat
quasibound states with positive energy of relative mot
that arose due to the centrifugal barrier.

The next step was the use of the dimer evaporation rat
the kinetic scheme describing the formation and evolution
disperse composition of the particles resulting from
nucleation process, the limiting stage of which being
e-

,

,

a-

ete
e

o
is

a-

l-
le
ic
n
n

h
n
n

in
f

e
e

jump over the dimer state. The fact thatb2 /a2c1!1 ~the
dimer evaporation time is much shorter than the conden
tion time! helped us to get rid of the dimerization rate@see
Eqs.~49! and~50!#. The latter value is defined by three-bod
processes and is not yet well studied.

The time evolution of the mass spectrum forming in t
nucleation-condensation process was shown to depend
finite number of the particle spectrum moments once
homogeneity exponentl defining the condensation rate
specified asl5n/(n11). Fortunately, this specification in
cludes two practically important cases:l51/2 andl52/3.
The former exponent is used for describing the formation
island films~see, e.g., Refs.@15,14# and references therein!,
while the latter corresponds to the condensation rate pro
tional to the area of growing particle surface and is thus u
in the Physics of Aerosols for the description of the parti
growth in the free molecular regime@16#.

The renormalization transformation applied above to
growth equations allowed for a derivation of rather simp
equations for the set of universal functions describing
kinetics of the nucleation-condensation process. The in
ence of external parameters~the source productivity and tem
perature! on the process is reduced to rescaling t
concentration-time plane.
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